Behaves like cat
, but it first automatically unlists the exam to print the document.
Since the document is kept as a tree of lists, it simply abstract the idea of outputting the document. with one document.
Arguments
- FullDocument
Document as structure by
StructureDocument
- sep
The separation character(s) between each line.
- ...
all extra arguments get passed along to the command "
cat
"
Examples
catDocument(TexExamRandomizer::testdoc)
#> % Studentds question collection
#>
#> \documentclass{exam}
#> %SET-UP:
#> \usepackage{amsmath, physics, tikz, tcolorbox, graphicx}
#>
#>
#> %! TexExamRandomizer = {"noutput":3, "nquestions": 13}
#> %! TexExamRandomizer = {"table":"../ExampleTables/TestClass.csv"}
#> %! TexExamRandomizer = {"randominfo": {"switchnumber":["even", "odd"]}}
#> %! TexExamRandomizer = {"extrainfo":{"class":"Class"}}
#> %! TexExamRandomizer = {"randominfo": {"randomnumber":100000000}, "extrainfo":{"rollnumber":"Roll Number","nickname":"Nickname"}, "seed":69504}
#>
#> \newcommand{\randomnumber}{3}
#> \newcommand{\switchnumber}{hi}
#> \newcommand{\class}{class}
#> \newcommand{\rollnumber}{rollnumber}
#> \newcommand{\nickname}{nickname}
#> \newcommand\myversion{0}
#> \newcommand\rseed{seed}
#>
#>
#> % DOCUMENT STARTS HERE
#> \begin{document}
#>
#> \author{\class\ --- \nickname --- \rollnumber}
#> \title{\textsc{Exam collection} --- mini-exam, random \randomnumber, switch \switchnumber }
#>
#> \date{seed:\rseed, version:\myversion}
#> \maketitle
#>
#>
#> \begin{questions}
#>
#> \section{Word problems}
#>
#> \question What is the mathematical definition of derivative.
#>
#> \begin{choices}
#> \choice $f'(x) = \lim_{h\to 0}$ $\frac{f(x)-f(x)}{h+x}$
#> \choice $f'(x) = \lim_{h\to 0}$ $\frac{f(x)-f(h)}{x}$
#> \choice $f'(x) = \lim_{h\to 0}$ $\frac{f(x+h)+f(h)}{x}$
#> \CorrectChoice $f'(x) = \lim_{h\to 0}$ $\frac{f(x+h)-f(x)}{h}$
#> \end{choices}
#> \question What is the derivative of the function $h(x) = \frac{f(x)}{g(x)}$,
#>
#> \begin{choices}
#> \choice $h'(x) = f'(g(x)) \cdot g'(x).$
#> \choice $h'(x) = f'(x)g(x)-f(x)g'(x).$
#> \choice $h'(x) = f'(x)g(x)+f(x)g'(x).$
#> \CorrectChoice $h'(x) = \frac{f(x)g'(x)-f'(x)g(x)}{(g(x))^2}.$
#> \end{choices}
#>
#> \question Which one is the correct form of the chain rule ?
#>
#> \begin{choices}
#> \choice $(f(g'))(x)=f'(g(x'))g'(x)$
#> \choice $(f(g'))'(x)=f'(g(x'))g'(x)$
#> \choice $(f(g))'(x)=f'(g'(x'))g'(x')$
#> \CorrectChoice $(f(g))'(x)=f'(g(x))g'(x)$
#> \end{choices}
#>
#> \question Which of the following is NOT a type of discontinuity?
#>
#> \begin{choices}
#> \choice Removable.
#> \choice Infinite jump.
#> \choice Finite jump.
#> \CorrectChoice Endpoint.
#> \end{choices}
#>
#> \question What does a `Derivative' describe?
#> \begin{choices}
#> \choice It describes the instantaneous change of rate of the functions at $x$ axis.
#> \choice It describes the instantaneous change of rate of the functions at $y$ axis.
#> \choice It describes the instantaneous change of rate of the functions at some point.
#> \CorrectChoice It describes the instantaneous change of rate of the functions at every point.
#> \end{choices}
#> \question What is a tangent line to a curve at a point $x = a$?
#>
#> \begin{choices}
#> \choice A line that crosses a curve once.
#> \choice None of the other choices are correct.
#> \choice A line that crosses a curve in two points.
#> \CorrectChoice A line that has the same slope as the curve at the point $x = a$.
#> \end{choices}
#> \question What type of graph is the derivative of $f(x)= 5x^3+6x^2+5x-1$ graph?
#>
#> \begin{choices}
#> \choice Line.
#> \choice Circle.
#> \choice Hyperbola.
#> \CorrectChoice Parabola.
#> \end{choices}
#> \question The derivative of a function at a point $x = a$ tells us \ldots
#>
#> \begin{choices}
#> \choice The limit of the function
#> \choice The integral of the function.
#> \choice The average rate of change.
#> \CorrectChoice The slope of a tangent line of the graph at $x = a$.
#> \end{choices}
#>
#> \end{questions}
#>
#> \begin{questions}
#>
#> \section{Easy}
#> \question If $y=\cos5x$ find $\dv{y}{x}$.
#>
#> \begin{choices}
#> \choice $\dv{y}{x} = 5\cos5x$.
#> \choice $\dv{y}{x} = -2\sin5x$.
#> \choice $\dv{y}{x} = 5\cos2x$.
#> \CorrectChoice $\dv{y}{x} = -5\sin5x$.
#> \end{choices}
#> \question Given $y=2x^2-3x+5$, What is $\dv[2]{y}{x}$
#>
#> \begin{choices}
#> \choice $\dv[2]{y}{x}=4x-3$
#> \choice $\dv[2]{y}{x}=16x-12$
#> \choice $\dv[2]{y}{x}=0$
#> \CorrectChoice $\dv[2]{y}{x}=4$
#> \end{choices}
#> \question What is the derivative of $y=\sin (2x + 5)$
#>
#> \begin{choices}
#> \choice $ \cos(2x+5)$
#> \CorrectChoice $ 2\cos(2x+5)$
#> \choice $ 2\cos(2x)+5$
#> \choice $ -2\cos(2x-5)$
#> \end{choices}
#>
#>
#> \question If the functions $f(x)$ and $g(x)$ are continuous everywhere then, what can we say about the function $h(x) = \frac{f(x)}{g(x)}$:
#>
#> \begin{choices}
#> \CorrectChoice $\frac{f(x)}{g(x)}$ is also continuous everywhere except at the zeros of $g(x)$.
#> \choice $h(x) = \frac{f(x)}{g(x)}$ is also continuous everywhere.
#> \choice $h(x)$ will never cross the x axis.
#> \choice More information is needed to answer this question.
#> \end{choices}
#>
#>
#> \question Find the value of $\lim_{x\to 2}\frac{x-1}{x^2-x-1}$
#>
#> \begin{choices}
#> \choice $0$.
#> \CorrectChoice $1$.
#> \choice $\infty$.
#> \choice Not possible.
#> \end{choices}
#>
#> \question What is the derivative of $f(x)= 3x^4+2x^3-3x-2$
#> \begin{choices}
#> \choice $f'(x)= 3x^7+2x^6-3x^3-2$.
#> \choice $f'(x)= 12x^3+6x^2-5$.
#> \choice $f'(x)= 7x^4+5x^3-4x-2$.
#> \CorrectChoice $f'(x)= 12x^3+6x^2-3$.
#> \end{choices}
#> \question What is the derivative of $(x^{2} + 3)(5 x + 2)$ ?
#>
#> \begin{choices}
#> \choice $15 x^{2} + 19 x$
#> \choice $50 x^{2} + 60 x$
#> \choice $2 x + 5$
#> \CorrectChoice $15 x^{2} + 4 x + 15$
#> \end{choices}
#> \question When $f'(x) = 0$ what happens?
#>
#> \begin{choices}
#> \choice $f''(x) = 1$
#> \choice $f''(x) = 0 $
#> \CorrectChoice The point is a critical point
#> \choice Local maximum or minimum or an inflection point.
#> \end{choices}
#> \question What is the derivative of $f(x) = (2x+8)^2$
#>
#> \begin{choices}
#> \choice $32$
#> \choice $3x+32$
#> \choice $4x+32$
#> \CorrectChoice $8x+32$
#> \end{choices}
#>
#> \question If $f(x) =\sqrt{x^3 - 4x}$, calculate when $f(x)=0 $
#>
#> \begin{choices}
#> \choice $x = 0,\,1,\,{-1}$
#> \choice $x= 0, $
#> \choice $x= 0,\,2 $
#> \CorrectChoice$ x= 0,\,2,\,{-2} $
#> \end{choices}
#> \question Given $f(x) = \frac{x^3-4}{2x+2}$, then $\lim_{x\to 4} f(x) = \ldots$
#>
#> \begin{choices}
#> \choice $\ldots3.$
#> \choice $\ldots4.$
#> \choice $\ldots5.$
#> \CorrectChoice $\ldots6.$
#> \end{choices}
#> \question Suppose $f(x) = x^2 + 3$ and $g(x) = x - 2$. Which of the following is $(f-g)(x)$?
#>
#> \begin{choices}
#> \choice $(f-g)(x)=x^2 - x +1$
#> \choice $(f-g)(x)=x^3 + 2x^2 + 3x -2$
#> \choice $(f-g)(x)=x^2 - 4x + 7$
#> \CorrectChoice $(f-g)(x)=x^2 - x + 5$
#> \end{choices}
#>
#> \question Given the functions $f(x) = x^4+3$ and $g(x) = \sqrt{x}$, find the value of $(f\circ g)'(x)\ldots$
#>
#> \begin{choices}
#> \choice $(f\circ g)'(x) = x$
#> \CorrectChoice $(f\circ g)'(x) = 2x$
#> \choice $(f\circ g)'(x) = 3x$
#> \choice $(f\circ g)'(x) = 4x$
#> \end{choices}
#> \question Which one is the correct form of the product rule?
#>
#> \begin{choices}
#> \choice $(f(x)\cdot g(x))' = f'(x)g'(x)+f'(x)g'(x)$
#> \choice $(f(x)\cdot g(x))' = f'(x)g'(x)+f(x)g(x)$
#> \choice $(f(x)\cdot g(x))' = f(x)g'(x)+f(x)g'(x)$
#> \CorrectChoice $(f(x)\cdot g(x))' = f'(x)g(x) + f(x)g'(x)$
#> \end{choices}
#>
#> \question What is the derivative of $f(x) = \sqrt{4x+5}$
#>
#> \begin{choices}
#> \choice $2\sqrt{x+5}$.
#> \choice $8$.
#> \choice $\frac{\sqrt{4x+5}}{2}$.
#> \CorrectChoice $\frac{2}{\sqrt{4x+5}}$.
#> \end{choices}
#> \question Calculate the derivative of $f(x) = 2x^2+3$
#>
#> \begin{choices}
#> \CorrectChoice $f'(x) = 4x$
#> \choice $f'(x) = 2x$
#> \choice $f'(x) = 5x$
#> \choice $f'(x) = 6x$
#> \end{choices}
#> \question Calculate the derivative of $y=\sin(3x{^2}+1)$
#>
#> \begin{choices}
#> \choice $\dv{y}{x} = \sin(3x{^2}+1)$
#> \choice $\dv{y}{x} = \cos(3x{^2}+1)$
#> \choice $\dv{y}{x} = 6x\sin(3x{^2}+1)$
#> \CorrectChoice $\dv{y}{x} = 6x \cos(3x{^2}+1)$
#> \end{choices}
#> \question Find the derivative of $f(x) = \sqrt[6]{4x+4}$
#>
#> \begin{choices}
#> \choice $f'(x) = 4 (4x+4)^{-1/3} $
#> \choice $f'(x) = \frac{4x }{6 \sqrt[3]{4x+4}}$
#> \choice $f'(x) = \frac{4 x + 4}{6 \sqrt[6]{(4x + 4)^{5}}} $
#> \CorrectChoice $f'(x) = \frac{4}{6 \sqrt[6]{(4x + 4)^{5}}}$
#> \end{choices}
#>
#> \end{questions}
#>
#>
#>
#>
#> \begin{questions}
#>
#> \section{Medium}
#> \question What is the derivative of f(x)=$(1-6x^2)^4$
#> \begin{choices}
#> \choice $4(1-6x^2)^3$
#> \choice $4x(1-6x^2)^3$
#> \choice $48x(1-6x^2)^3$
#> \CorrectChoice $-48x(1-6x^2)^3 y$
#> \end{choices}
#>
#> \question Find the slope of the tangent line of the curve $y = \frac{1}{x}$ at the point $(3,\frac13)$
#>
#> \begin{choices}
#> \choice $\frac{1}{3}$
#> \choice $\frac{-1}{3}$
#> \choice $\frac{1}{9}$
#> \CorrectChoice $\frac{-1}{9}$
#> \end{choices}
#>
#> \question Calculate the following limit: $\lim_{x \to -2} = \frac{x^3+8}{x+2}\ $
#>
#> \begin{choices}
#> \choice $\infty$.
#> \choice $4$.
#> \choice $1$.
#> \CorrectChoice $12$.
#> \end{choices}
#> \question Is this function continuous or discontinuous? $f(x) = \frac{x+8}{x-4}$
#>
#> \begin{choices}
#> \choice Continuous.
#> \choice Discontinuous, contains a removable discontinuities.
#> \choice No other answer is correct.
#> \CorrectChoice Discontinuous, contains a jump discontinuities.
#> \end{choices}
#>
#> \question $\displaystyle \lim_{x\to 4}{x^{2} + 2 x - 4}$ ?
#>
#> \begin{choices}
#> \choice 14
#> \choice 16
#> \choice 18
#> \CorrectChoice 20
#> \end{choices}
#>
#> \question What is the name of the functions $\frac1{\cos x}$ ?
#> \begin{choices}
#> \choice $\csc x$
#> \choice $\cot x$
#> \choice $\tan x$
#> \CorrectChoice $\sec x$
#> \end{choices}
#>
#> \question Find the value of $\displaystyle \lim_{x \to 6} \frac{x^2 -36}{x^3 -216}$
#>
#> \begin{choices}
#> \choice $\frac{1}{6}$
#> \CorrectChoice $\frac{1}{9}$
#> \choice $\frac{1}{12}$
#> \choice $\frac{1}{15}$
#> \end{choices}
#> \question What is the function $f$ whose derivative is $f'(x)=x^5 +30$
#>
#> \begin{choices}
#> \choice $f(x) = 5x^4 +30x$
#> \choice $f(x) = 5x^4$
#> \choice $f(x) = x^6 +30x$
#> \CorrectChoice $f(x) = \frac{x^6}{6} +30x$
#> \end{choices}
#> \question Find the derivative of $f(x) = \frac{x-1}{x+1}$
#>
#> \begin{choices}
#> \choice $f'(x) = \frac{-2}{(x+1)^2}$
#> \choice $f'(x) = \frac{2}{(x-1)^2}$
#> \choice $f'(x) = \frac{-2}{(x-1)^2}$
#> \CorrectChoice $f'(x) = \frac{2}{(x+1)^2}$
#> \end{choices}
#>
#> \end{questions}
#>
#>
#>
#>
#> \begin{questions}
#>
#> \section{Hard}
#> \question Calculate $\lim_{x\to 1}\frac{\sin (2x^2-2)}{x^2-1}$. (Hint: L'H\^opital rule)
#>
#> \begin{choices}
#> \choice $1$
#> \choice $-1$
#> \choice The limit does not exist.
#> \CorrectChoice $2$
#> \end{choices}
#> \question What is the local minimum of $x^3-2x^2$ in the range where $-1<x<1$?
#>
#> \begin{choices}
#> \choice $x=0$
#> \choice $x=-1$
#> \choice There is no local minimum in that range.
#> \CorrectChoice $x=\frac43$
#> \end{choices}
#> \question What is the derivative of $f(x) = 2x \sin x + 2 \cos x - x^{2}\cos x.$
#>
#> \begin{choices}
#> \choice $f'(x) = x^{2} \sin x + 2 x \cos x -2\sin x$.
#> \choice $f'(x) = x^{2}\cos x$.
#> \choice $f'(x) = 2x\cos x$.
#> \CorrectChoice $f'(x) = x^{2}\sin x$.
#> \end{choices}
#>
#> \question What is value of the $\displaystyle \lim_{h \to 0} \frac{f(x+h) -f(x)}{h}$ tells about the function?
#>
#> \begin{choices}
#> \choice\label{choice:der1} The Slope of the graph.
#> \choice\label{choice:der2} The critical point of the function , when the value of the limit is 0.
#> \CorrectChoice Both options, \ref{choice:der1} and \ref{choice:der2}, are correct.
#> \choice None of the above.
#> \end{choices}
#>
#> \question What is the derivative of $f(x) = \arctan(2x)$ ?
#>
#> \begin{choices}
#> \choice $\frac{2}{1 + x^{2}}$
#> \choice $\frac{2}{2 + x^{2}}$
#> \choice $\frac{2}{2 + 4x^{2}}$
#> \CorrectChoice $\frac{2}{1 + 4x^{2}}$
#> \end{choices}
#> \question Find the derivatives of f(x) = $\sin^6(x^4)$
#>
#> \begin{choices}
#> \choice $6\sin^{5}(x^4)$
#> \choice $24 x^{3}\sin(x^3) \sin(x^4)$
#> \choice $24\sin(x^4) \cos(x^3)$
#> \CorrectChoice $24 x^{3} \sin^{5}(x^4) \cos(x^4) $
#> \end{choices}
#> \question Find the derivative of $f(x)$ = $\sqrt{x^2+3x}$.
#>
#> \begin{choices}
#> \choice $f'(x) = \frac{1}{2}\sqrt{2x+3}$.
#> \choice $f'(x) = \frac{1}{x^2+3x}(2x+3)$.
#> \choice $f'(x) = \frac{-1}{2 \sqrt{2x + 3}}$.
#> \CorrectChoice $f'(x) = \frac{2x + 3}{2 \sqrt{2x + 3}}$.
#> \end{choices}
#>
#>
#> \end{questions}
#>
#>
#> \begin{questions}
#> \section{Graphic problems}
#> \question
#> From the following graph find $\lim_{x \to -2 } f(x)$
#> \par\nopagebreak
#> \includegraphics[width = 6cm]{limgraph.jpg}
#>
#> \begin{choices}
#> \choice $0$.
#> \choice $5$.
#> \choice $4$.
#> \CorrectChoice undefined.
#> \end{choices}
#>
#> \end{questions}
#>
#>
#> \begin{questions}
#> \section{Bonus, integration}
#> \question Find the area of the graph between f(x) = $x^4$ and f(x) = $(x-6)^4$
#>
#> \begin{choices}
#> \choice $\frac{243}{5}$
#> \choice $\frac{243}{10}$
#> \choice $\frac{486}{10}$
#> \CorrectChoice $\frac{486}{5}$
#> \end{choices}
#> \question Find the integral of $ 4x^3+3x^2 $
#>
#> \begin{choices}
#> \choice $12x^2 + 6x$
#> \choice $4x^2 + 3x$
#> \choice $4x^4 + 3x^3 + c$
#> \CorrectChoice $x^4 + x^3 +c$
#> \end{choices}
#> \question What is the area under the graph $y = x^3$, the line $y = 0$ and the lines $x=0$ and $x=2$?
#>
#> \begin{choices}
#> \choice 8
#> \choice 16
#> \choice 24
#> \CorrectChoice 4
#> \end{choices}
#> \question Which of these processes are used to calculate the area under a curve?
#> \begin{choices}
#> \choice First derivative
#> \choice Product rule
#> \choice Second derivative
#> \CorrectChoice Integral
#> \end{choices}
#>
#>
#>
#>
#> \end{questions}
#>
#> \end{document}